Lillian Fritz–Laylin

Associate Professor, Biology

B.A., University of California, Berkeley, 2003
Ph.D., University of California, Berkeley, 2010

University of California, San Francisco, 2010-2017

Research Interests

Cell biology’s roots reach back over 300 years, at least as far as Anton van Leeuwenhoek's discovery of motile “animacules” in a drop of water. From the beginning, one of the clearest signatures of life has been purposeful motion, and much of the field has pursued the seemingly simple question: How do cells move? We now understand in some detail the motility of adherent mammalian cells, which creep along at 1-10 microns per hour. However, some free-living amoebae can crawl at speeds topping 120 microns per minute. Clearly, not all cells are moving in the same way. In fact, a wide variety of evidence now indicates that cell crawling is not a single behavior, but rather a collection of processes, driven by distinct molecular mechanisms.

To understand how diverse organisms crawl, my lab is working to precisely define mechanical modes of locomotion, and then identify the genes underlying these complex traits. We use the phylogenetic distribution of suites of conserved crawling genes to trace the evolution of these key eukaryotic behaviors, as well as to predict crawling motility in new species. Day-to-day, my lab couples comparative genomics, phylogenetics, and microscopy to generate hypotheses about cell motility, which we test in a variety of organisms and cell types, including human neutrophils, insect cells, the amoeboflagellate Naegleria gruberi, and more recently Bradiochytrium dendrobatidis, a fungal disease devastating amphibian populations world-wide. Studying a broad range of organisms allows my lab to uncover core, conserved features of cell motility, as well as discover new and unexpected behaviors of less-studied cells.


Representative Publications
Fritz-Laylin, L.K., Fulton, C. Naegleria: a classic model for de novo basal body assembly, Cilia. April, 2016. Cilia 5: 10.

Fritz-Laylin, L.K. , Levy, Y.Y., Levitan, E., Chen, .S, Cande, W.Z., Lai, E.Y., Fulton, C. Rapid Centriole Assembly in Naegleria Reveals Conserved Roles for Both De Novo and Mentored Assembly, Cytoskeleton. March 2016. Volume 73: 109–116.

Chou, S., Daugherty, M.D., Peterson, S.B., Biboy, J., Yang, Y., Brandon, Jutras B., Fritz-Laylin, L.K., Ferrin, M.A., Harding, B.N., Jacobs-Wagner, C., Yang, X.F., Vollmer, W., Malik, H.S., Mougous, J.D. Recurrent domestication of interbacterial toxin genes provides antibacterial immunity to eukaryotes. Nature. February, 2015. 518: 98-101.

Chen, B., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M., Janetopoulos, C., Wu, X., Hammer, J.A., Liu, Z., English, B.P., Mimori-Kiyosue, Y., Romero, D.P., Ritter, A.T, Lippincott-Schwartz, J., Fritz-Laylin, L.K., Mullins, R.D., Mitchell, D.M., Bembenek, J.N., Reymann A,Böhme, R., Grill, S.W., Wang, J.T., Seydoux, G., Tulu, U.S., Kiehart, D.P., Betzig, E. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. October, 2014. 346: 440-451.

Rüdinger, M., Fritz-Laylin, L., Polsakiewicz, M., Knoop, V. Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA. December, 2011. 17: 2058-62.

Fritz-Laylin, L.K. , Ginger, M.L., Walsh, C., Dawson, S.C., Fulton, C. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Research in Microbiology. July-August 2011. 162: 607-18.

Fritz-Laylin, L.K. , Cande, W.Z. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. Journal of Cell Science. December, 2010. 123: 4024-31.

Ginger, M.L., Fritz-Laylin, L.K., Fulton, C., Cande, W.Z., Dawson, S.C. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist. December, 2010. 161: 642-71.

Prochnik, S.E., Umen, J.,, Nedelcu, A., Hallmann, A., Miller, S., Nishii, I., Ferris, P., Kuo, A., Mitros, T., Fritz-Laylin, L.K., Hellsten, U., Chapman, J., Simakov, O., Rensing, S.A., Terry, A., Pangilinan, J., Kapitonov, V., Jurka, J., Salamov, A., Shapiro, H., Schmutz, J., Grimwood, J., Lindquist, E., Lucas, S., Grigoriev, I., Schmitt, R., Kirk, D., Rokhsar, D.S. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri, Science. July, 2010. 329: 223-6.

Fritz-Laylin, L.K., Assaf, Z.J., Chen, S., Cande, W.Z. Naegleria de novo basal body assembly occurs via stepwise incorporation of conserved proteins, Eukaryotic Cell. June, 2010. 9: 860-865.

Fritz-Laylin, L.K. , Prochnik, S.E., Ginger, M., Dacks, J., Carpenter, M.L., Field, M., Kuo, A., Paredez, A., Chapman, J., Pham, J., Shu, S., Neupane, R., Cipriano, M., Mancuso, J., Tu, H., Salamov, A., Lindquist, E., Shapiro, H., Lucas, S., Grigoriev, I., Cande, W.Z., Fulton, C., Rokhsar, D., Dawson, S. The genome of Naegleria gruberi illuminates early eukaryotic versatility, Cell. March, 2010. 140: 631-642.

Dawson, S.C., Fritz-Laylin, L.K. Sequencing free-living protists: the case for metagenomics, Environmental Microbiology. July, 2009.11: 1627-1631.

Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, S., Fritz-Laylin, L.K., Maréchal-Drouard, L., Marshall, W.F., Qu, L.H., Nelson, D.R., Sanderfoot, A.A., Spalding, M.H., Kapitonov, V.V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Grimwood, J., Schmutz, J., Collaborators from the Chlamydomonas Community, JGI Sequencing Team, JGI Annotation Team, Grigoriev IV, Rokhsar DS, Grossman AR. The Chlamydomonas genome reveals evolutionary insights into key animal and plant functions, Science. October, 2007. 318(5848): 245-50.

Dawson, S.C., Sagolla, M.S., Mancuso, J.J., Fritz-Laylin, L.K., Cande, W.Z. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryotic Cell. December, 2007. 6(12): 2354-64.

Fritz-Laylin, L. , Krishamurthy, N., To,r M., Sjölander, K., Jones, J. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis, Plant Physiology, June 2005. 138: 611-623.

Rowland, O., Ludwig, A.A., Merrick, C.J., Baillieul, F., Tracy, F.E., Durrant, W.E., Fritz-Laylin, L., Nekrasov, V., Sjölander, K., Yoshioka, H., Jones, J.D. Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9-Dependent Disease Resistance in Tomato', Plant Cell. January 2005. 17(1): 295-310.